NitrosomonasDid we forget anything? Let us know

Genus nameNitrosomonas
Alternative namesNitrosococcus mobilis
NCBI taxonomy ID914

Taxonomy (MiDAS 2.0)


16S gene copy number1

 In situOther
Hydrophobic cell surface

Three populations of nitrifying bacteria, detected simultaneously in a nitrifying sequencing batch biofilm reactor with ammonia-oxidizing bacteria (AOB) of the Nitrosomonas oligotropha lineage detected by probe Cluster6a192 (Cy5; blue), nitrite oxidizing bacteria (NOB) of Nitrospira sublineage I probe Ntspa1431 (Cy3; red), NOB of Nitrospira sublineage II probe Ntspa1151 (FLUOS; green). Bar = 10 mm. - Source:1

Aerobic heterotroph
Nitrite reduction
Short-chain fatty acids

POSNEGVariableNot assessed


Aerobic, lithoautotrophic, ammonia-oxidizers, that are widely distributed in nature, and important in most treatment plants 9 3 10. Can grow mixotrophically with organic substrates 11 12. Under mixotrophic conditions members of the genus can also nitrify and denitrify simultaneously. In the absence of oxygen, H2 or simply organic compounds can act as electron donors with nitrite as the electron acceptor 13. N. oligotropha forms microcolonies in activated sludge 16. Among Nitrosomonas species, Nitrosomonas europaea/Nitrosomonas mobilis cluster 7 was dominant in wastewater treatment bioreactors loaded with high concentrations of ammonia and nitrite, whereas N. oligotropha cluster 6a was dominant in systems with a lower ammonia environment 17.

Show full entry


Lineages include N. marina, N. communis, N. europeae, N. oligotropha and N. sp. Nm143, along with several uncultured 9.

FISH probes

Nso1225 (inc. Nitrosospira) 14


 In situOther
Aerobic Heterotroph1015
Nitrite Reduction567813
Sulfate Reduction
Short-chain Fatty Acids11
Proteins/Amino Acids

Abundance Information

 10 % percentileMedian90 % percentile
Activated Sludge0.10.30.7

Predominant InActivated sludge


[1] Nielsen PH, Daims H, and Lemmer, H (2009) FISH Handbook for Biological Wastewater Treatment: Identification and quantification of microorganisms in activated sludge and biofilms by FISH. IWA Publishing Company - Nielsen Et Al 2009 -

[2] Gieseke, Nielsen, Amann, Nielsen, de Beer (2005): In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm. Environ. Microbiol. 7 (9): 1392-404. doi:10.1111/j.1462-2920.2005.00826.x

[3] Daims H. And Wagner M. (2010) The microbiology of nitrogen removal In: Microbial Ecology of Activated Sludge. Seviour R.J. & Nielsen P.H. (eds.). IWA Publishing. London, UK. - Daims And Wagner 2010 -

[4] - NCBI genome database, NCBI id 914 -

[5] Bollmann, Sedlacek, Norton, Laanbroek, Suwa, Stein, et al. (2013): Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Stand Genomic Sci 7 (3): 469-82. doi:10.4056/sigs.3517166

[6] Chain, Lamerdin, Larimer, Regala, Lao, Land, et al. (2003): Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J. Bacteriol. 185 (9): 2759-73.

[7] Stein, Arp, Berube, Chain, Hauser, Jetten, et al. (2007): Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Microbiol. 9 (12): 2993-3007. doi:10.1111/j.1462-2920.2007.01409.x

[8] Suwa, Yuichi, Norton, Bollmann, Klotz, Stein, et al. (2011): Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia. J. Bacteriol. 193 (18): 5047-8. doi:10.1128/JB.05521-11

[9] Purkhold, Pommerening-Röser, Juretschko, Schmid, Koops, Wagner, et al. (2000): Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66 (12): 5368-82.

[10] Prosser, J.I., Head, I.M., Stein, Y.S. (2014) The Family Nitrosomonadaceae. In: The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 4th Edition. Eds. E. Rosenberg; E.F. Delong; S. Lory; E. Stackebrandt; F. Thompson. Heidelberg : Springer Science+Business Media B.V., 2014. p. 901-918. - Prosser Et Al 2014 -

[11] Hommes, Sayavedra-Soto, Arp (2003): Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. J. Bacteriol. 185 (23): 6809-14.

[12] Clark, Schmidt (1967): Growth response of Nitrosomonas europaea to amino acids. J. Bacteriol. 93 (4): 1302-8.

[13] Bock, E., Schmidt, I., Stuven, R., Zart, D. (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163: 16-20 - Bock Et Al 1995 -

[14] Mobarry, Wagner, Urbain, Rittmann, Stahl (1996): Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62 (6): 2156-62.

[15] Koops H.P., Bottcher B., Moller U.C., Pommerening-Roser A. and Stehr G. (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J. Gen. Microbiol. 137: 1689-1699. - Koops Et Al 1991 -

[16] Larsen, Nielsen, Svendsen, Nielsen (2008): Adhesion characteristics of nitrifying bacteria in activated sludge. Water Res. 42 (10-11): 2814-26. doi:10.1016/j.watres.2008.02.015

[17] Thandar, Ushiki, Fujitani, Sekiguchi, Tsuneda (2016): Ecophysiology and Comparative Genomics of Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor. Front Microbiol 7 (): 1869. doi:10.3389/fmicb.2016.01869

Hide details
comments powered by Disqus

Contact us at