BradyrhizobiumDid we forget anything? Let us know

Genus nameBradyrhizobium
Alternative namesRhizobium japonicum, Blastobacter denitrificans, Rhizobium lupini, Agrimonas oligotrophica
NCBI taxonomy ID374

Taxonomy (MiDAS 2.0)


16S gene copy number1-2

 In situOther
Hydrophobic cell surface5

Image of Bradyrhizobium sp. Tv2a.2 using scanning electron microscopy. - Source:2

Aerobic heterotroph
Nitrite reduction
Short-chain fatty acids

POSNEGVariableNot assessed


Rods 0.5 – 0.9 x 1.2 -3.0 µm 3. Abundant in soils. Some of the species nodulate and fix nitrogen with the nodulation and nitrogen fixation gene clusters located on a symbiotic island within the genome 7. Aerobic, chemoorganotrophs, affiliated with the fixation of atmospheric nitrogen 3. Carbohydrates and organic acids are typically utilized as carbon sources for growth 3, however some strains of B. japonicum are able to grow autotrophically with H2 as an energy source under microaerobic conditions 4. B. japonicum respires aerobically in the presence of oxygen during heterotrophic growth. Denitrification of nitrate to nitrogen is also possible by this species in the absence of oxygen 8. Young cultures of Bradyrhizobium occur as small rods, but become swollen in older cultures 3. No in situ information is available for the genus in wastewater treatment systems.

Show full entry

FISH probes

CARD-FISH probe KS-Brady1249 9


 In situOther
Aerobic Heterotroph3
Nitrite Reduction1011
Sulfate Reduction
Short-chain Fatty Acids3
Proteins/Amino Acids

Abundance Information

 10 % percentileMedian90 % percentile
Activated Sludge000

Predominant In-


[1] - NCBI genome database, NCBI id 374 -

[2] Tian, Parker, Seshadri, Reddy, Markowitz, Ivanova, et al. (2015): High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama. Stand Genomic Sci 10 (): 27. doi:10.1186/s40793-015-0006-0

[3] - -

[4] Hanus, Maier, Evans (1979): Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas. Proc. Natl. Acad. Sci. U.S.A. 76 (4): 1788-92.

[5] Park, So (2000): Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum. J. Microbiol. Methods 41 (3): 219-26.

[6] Cai, Wilkins, Chen, Ng, Lu, Jia, et al. (2016): Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems. Front Microbiol 7 (): 778. doi:10.3389/fmicb.2016.00778

[7] Schneijderberg, Schmitz, Cheng, Polman, Franken, Geurts, et al. (2018): A genetically and functionally diverse group of non-diazotrophic Bradyrhizobium spp. colonizes the root endophytic compartment of Arabidopsis thaliana. BMC Plant Biol. 18 (1): 61. doi:10.1186/s12870-018-1272-y

[8] Franck, Chang, Qiu, Sugawara, Sadowsky, Smith, et al. (2008): Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. J. Bacteriol. 190 (20): 6697-705. doi:10.1128/JB.00543-08

[9] Tominski, Lösekann-Behrens, Ruecker, Hagemann, Kleindienst, Mueller, et al. (2018): Insights into Carbon Metabolism Provided by Fluorescence Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Appl. Environ. Microbiol. 84 (9): . doi:10.1128/AEM.02166-17

[10] Polcyn, Luciński (2003): Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol. Lett. 226 (2): 331-7. doi:10.1016/S0378-1097(03)00620-7

[11] Meakin, Bueno, Jepson, Bedmar, Richardson, Delgado, et al. (2007): The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology (Reading, Engl.) 153 (Pt 2): 411-9. doi:10.1099/mic.0.2006/000059-0

Hide details
comments powered by Disqus

Contact us at