Genus nameCoprothermobacter
Alternative namesThermobacterioides proteolyticus [U89] [U90]
NCBI taxonomy ID68335



16S gene copy number2

 In situOther
Hydrophobic cell surface

FISH analysis of Coprothermobacter proteolyticus (DSMZ 5265) using CTH485 probe together with helper CTH439. Scale bar: 10 microns. - Source:3

Proteins/Amino acids

POSNEGVariableNot assessed


Strictly anaerobic 4 5 6, thermophilic bacteria, which thrive in temperatures between 50-70˚C 7. They are found in thermophilic anaerobic digesters, often in association with methanogenic microbial communities. Members of the genus are proteolytic and grow via the fermentation of proteins and sugars 4 5 6. However, sugars are poorly fermented in pure culture, unless supplements such as yeast extract and rumen fluid are added 4 5 6. H2, CO2 and acetate are produced as products of fermentation 4 5 6. Small amounts of isobutyric acid, isovaleric acid and propionic acid are also produced by C. proteolyticus 5. Protein degradation is improved by syntrophic association with hydrogenotrophic methanogens such as Methanothermobacter thermoautotrophicus 8 9. Growth of Coprothermobacter in anaerobic digesters is further enhanced by the type of substrates in the respective wastes 10 and thermal pre-treatment of activated sludge, which enables a greater availability of proteinaceous substrates which have been partially hydrolyzed during the pre-treatment of the fed sludge 9. Other metabolic abilities of Coprothermobacter may include a possible involvement in syntrophic acetate oxidation (SAO) 11.

Show full entry

FISH probes

Probe CTH485 should be applied together with hCTH439 helper probe for analysis of thermophilic anaerobic sludge 3. Unspecific binding of Coprothermobacter spp. occurs with probe ARC915 3.


 In situOther
Aerobic Heterotroph456
Nitrite Reduction
Sulphate Reduction6
Fatty Acids
Proteins/Amino Acids94568913

Abundance Information

 10 % percentileMedian90 % percentile
Activated Sludge000

Predominant InAD - Thermophilic


[1] - NCBI genome database, NCBI id 68335 -

[2] Alexiev, Coil, Badger, Enticknap, Ward, Robb, et al. - Complete Genome Sequence of Coprothermobacter proteolyticus DSM 5265. - Genome Announc 2(3): . doi:10.1128/genomeA.00470-14

[3] Gagliano, Braguglia, Rossetti - In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process. - FEMS Microbiol. Lett. 358(1): 55-63. doi:10.1111/1574-6968.12528

[4] Rainey, F.A., and Stackebrandt, E. (1993) Transfer of the type species of the genus Thermobacterioides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb. Nov., Description of Thermobacterioides proteolyticus as Coprothermobacter proteolyticus (Ollivier et al., 1985) comb. nov. Int. J. Syst. Bacteriol. 43(4): 857-859. - Rainey And Stackebrandt 1993 -

[5] Ollivier, B.M., Mah, R.A., Ferguson, T.J., Boone, D.R., Garcia, J.L., Robinson, R. (1985) Emendation of the Genus Thermobacterioides: Thermobacterioides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int. J. Syst. Bacteriol. 35(4): 425-428. - Ollivier Et Al 1985 -

[6] Etchebehere, C., Pavan, M.E., Zorzopulos, J., Soubes, M., and Muxi, L. (1998) Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. Int. J. Syst. Bacteriol. 48(4): 1297-1304. - Etchebehere Et Al 1998 -

[7] Gagliano, Braguglia, Petruccioli, Rossetti - Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. - FEMS Microbiol. Ecol. 91(5): . doi:10.1093/femsec/fiv018

[8] Sasaki, Morita, Sasaki, Nagaoka, Matsumoto, Ohmura, et al. - Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. - J. Biosci. Bioeng. 112(5): 469-72. doi:10.1016/j.jbiosc.2011.07.003

[9] Gagliano, Braguglia, Gianico, Mininni, Nakamura, Rossetti, et al. - Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances. - Water Res. 68(): 498-509. doi:10.1016/j.watres.2014.10.031

[10] Tandishabo, Nakamura, Umetsu, Takamizawa - Distribution and role of Coprothermobacter spp. in anaerobic digesters. - J. Biosci. Bioeng. 114(5): 518-20. doi:10.1016/j.jbiosc.2012.05.023

[11] Ho, Jensen, Batstone - Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. - Environ. Sci. Technol. 48(11): 6468-76. doi:10.1021/es500074j

[12] Tandishabo, K., Iga, Y., Tamaki, H., et al. (2012) Characterisation of a novel Coprothermobacter sp. strain IT3 isolated from an anaerobic digester- Hydrogen production and peptidase profiles at higher temperatures. J. Env. Conserv. Eng. 41(12): 753-61. - Tandishabo Et Al 2012 -

[13] Lü, Bize, Guillot, Monnet, Madigou, Chapleur, et al. - Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. - ISME J 8(1): 88-102. doi:10.1038/ismej.2013.120

Hide details

The online MiDAS field guide is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


The MiDAS taxonomy is a manual curation of the Silva database and is redistributed for non-commercial use only.


Citing MiDAS: McIlroy S.J., Saunders A.M., Albertsen M., Nierychlo M., McIlroy B., Hansen A.A., Karst S.M., Nielsen J.L., Nielsen P.H. (2015) MiDAS: the field guide to the microbes of activated sludge. Database, Vol. 2015

Contact us at