Genus nameStreptococcus
Alternative namesNostocoida limicola' I morphotype [11249023]
NCBI taxonomy ID1301



16S gene copy number1-7

 In situOther
Hydrophobic cell surface383940414243

Scanning electron micrograph of Streptococcus sinensis. The bacterium is arranged in chains and is aflagellated. Cells vary in diameter from 0.82 to 0.98 microns. Bar, 1 micron. - Source:8

Aerobic heterotroph
Nitrite reduction
Proteins/Amino acids

POSNEGVariableNot assessed


Cocci occurring singly, in pairs or in chains of variable length 2 1 9 10 11. Streptococci in general possess a fermentative metabolism 2 1 9. They are facultative anaerobes, utilizing glucose under both aerobic and anaerobic conditions in activated sludge 2. In situ glucose is fermented to produce lactic acid, acetic acid, propionic acid and formic acid under anaerobic conditions 2. The genomes of various Streptococci suggest that they are capable of metabolizing a wide variety of carbohydrates, such as glucose, fructose, mannose, cellobiose, lactose, trehalose, maltose and galactitol 6 7 5.

Show full entry

Distribution plant/process configuration

Filamentous Streptococci are abundant in many municipal WWTPs with EBPR, constituting up to 4% of the biovolume with FISH 2.

FISH probes

Str/Strept 12


 In situOther
Aerobic Heterotroph281113141516
Nitrite Reduction17
Sulphate Reduction
Fatty Acids36
Proteins/Amino Acids281537

Abundance Information

 10 % percentileMedian90 % percentile
Activated Sludge0.10.10.4

Predominant InInfluent


[1] Nielsen, Nguyen, Meyer, Nielsen - Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing. - Microbiology (Reading, Engl.) 158(Pt 7): 1818-25. doi:10.1099/mic.0.058818-0

[2] Kong, Xia, Nielsen - Activity and identity of fermenting microorganisms in full-scale biological nutrient removing wastewater treatment plants. - Environ. Microbiol. 10(8): 2008-19. doi:10.1111/j.1462-2920.2008.01617.x

[3] Liu, Burrell, Seviour, Soddell, Blackall, Seviour, et al. - The filamentous bacterial morphotype 'Nostocoida limicola' I contains at least two previously described genera in the low G+C gram positive bacteria. - Syst. Appl. Microbiol. 23(4): 528-34. doi:10.1016/S0723-2020(00)80027-2

[4] - NCBI genome database, NCBI id 1301 -

[5] Ajdić, McShan, McLaughlin, Savić, Chang, Carson, et al. - Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. - Proc. Natl. Acad. Sci. U.S.A. 99(22): 14434-9. doi:10.1073/pnas.172501299

[6] Tettelin, Nelson, Paulsen, Eisen, Read, Peterson, et al. - Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. - Science 293(5529): 498-506. doi:10.1126/science.1061217

[7] Xu, Alves, Kitten, Brown, Chen, Ozaki, et al. - Genome of the opportunistic pathogen Streptococcus sanguinis. - J. Bacteriol. 189(8): 3166-75. doi:10.1128/JB.01808-06

[8] Woo, Tam, Leung, Lau, Teng, Wong, et al. - Streptococcus sinensis sp. nov., a novel species isolated from a patient with infective endocarditis. - J. Clin. Microbiol. 40(3): 805-10.

[9] Lory, S. (2014b) The family Streptococaceae. In: E, Rosenberg., E.F. De Long., S. Lory., E. Stackebrandt., and F. Thompson (eds). The Prokaryotes: Firmicutes and Tenericutes. Fourth edition, pp 367-370. Springer, Heidelberg, Berlin. - Lory 2014b -

[10] Kilper-Balz., R., and Schleifer, K.H. (1987) Streptococcus suis sp. nov., nom. Rev. Int. J. Syst. Bacteriol. 37(2): 160-162. - Kilper-balz And Schleifer 1987 -

[11] Collins, Hutson, Falsen, Inganäs, Bisgaard - Streptococcus gallinaceus sp. nov., from chickens. - Int. J. Syst. Evol. Microbiol. 52(Pt 4): 1161-4. doi:10.1099/00207713-52-4-1161

[12] Trebesius, Leitritz, Adler, Schubert, Autenrieth, Heesemann, et al. - Culture independent and rapid identification of bacterial pathogens in necrotising fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. - Med. Microbiol. Immunol. 188(4): 169-75.

[13] Glazunova, Raoult, Roux - Streptococcus massiliensis sp. nov., isolated from a patient blood culture. - Int. J. Syst. Evol. Microbiol. 56(Pt 5): 1127-31. doi:10.1099/ijs.0.64009-0

[14] Takada, Hirasawa - Streptococcus orisuis sp. nov., isolated from the pig oral cavity. - Int. J. Syst. Evol. Microbiol. 57(Pt 6): 1272-5. doi:10.1099/ijs.0.64741-0

[15] Vela, Mentaberre, Marco, Velarde, Lavín, Domínguez, et al. - Streptococcus rupicaprae sp. nov., isolated from a Pyrenean chamois (Rupicapra pyrenaica). - Int. J. Syst. Evol. Microbiol. 61(Pt 8): 1989-93. doi:10.1099/ijs.0.026187-0

[16] Zbinden, Mueller, Tarr, Spröer, Keller, Bloemberg, et al. - Streptococcus tigurinus sp. nov., isolated from blood of patients with endocarditis, meningitis and spondylodiscitis. - Int. J. Syst. Evol. Microbiol. 62(Pt 12): 2941-5. doi:10.1099/ijs.0.038299-0

[17] Forsythe, Dolby, Webster, Cole - Nitrate- and nitrite-reducing bacteria in the achlorhydric stomach. - J. Med. Microbiol. 25(4): 253-9. doi:10.1099/00222615-25-4-253

[18] Clavel, Charrier, Haller - Streptococcus danieliae sp. nov., a novel bacterium isolated from the caecum of a mouse. - Arch. Microbiol. 195(1): 43-9. doi:10.1007/s00203-012-0846-6

[19] Milinovich, Burrell, Pollitt, Bouvet, Trott - Streptococcus henryi sp. nov. and Streptococcus caballi sp. nov., isolated from the hindgut of horses with oligofructose-induced laminitis. - Int. J. Syst. Evol. Microbiol. 58(Pt 1): 262-6. doi:10.1099/ijs.0.65063-0

[20] Lawson, Foster, Falsen, Markopoulos, Collins - Streptococcus castoreus sp. nov., isolated from a beaver (Castor fiber). - Int. J. Syst. Evol. Microbiol. 55(Pt 2): 843-6. doi:10.1099/ijs.0.63433-0

[21] Vela, Sánchez Del Rey, Zamora, Casamayor, Domínguez, Fernández-Garayzábal, et al. - Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. - Int. J. Syst. Evol. Microbiol. 64(Pt 7): 2486-90. doi:10.1099/ijs.0.063123-0

[22] Takada, Hayashi, Sato, Hirasawa - Streptococcus dentapri sp. nov., isolated from the wild boar oral cavity. - Int. J. Syst. Evol. Microbiol. 60(Pt 4): 820-3. doi:10.1099/ijs.0.012799-0

[23] Takada, Saito, Tsudukibashi, Hiroi, Hirasawa - Streptococcus orisasini sp. nov. and Streptococcus dentasini sp. nov., isolated from the oral cavity of donkeys. - Int. J. Syst. Evol. Microbiol. 63(Pt 8): 2782-6. doi:10.1099/ijs.0.047142-0

[24] Camelo-Castillo, Benítez-Páez, Belda-Ferre, Cabrera-Rubio, Mira - Streptococcus dentisani sp. nov., a novel member of the mitis group. - Int. J. Syst. Evol. Microbiol. 64(Pt 1): 60-5. doi:10.1099/ijs.0.054098-0

[25] Martín, Mañes-Lázaro, Rodríguez, Maldonado-Barragán - Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. - Int. J. Syst. Evol. Microbiol. 61(Pt 5): 1048-52. doi:10.1099/ijs.0.021642-0

[26] Poyart, Quesne, Trieu-Cuot - Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of 'Streptococcus infantarius subsp. coli' as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. - Int. J. Syst. Evol. Microbiol. 52(Pt 4): 1247-55. doi:10.1099/00207713-52-4-1247

[27] Lawson, Foster, Falsen, Collins - Streptococcus marimammalium sp. nov., isolated from seals. - Int. J. Syst. Evol. Microbiol. 55(Pt 1): 271-4. doi:10.1099/ijs.0.63342-0

[28] Tappe, Pukall, Schumann, Gronow, Spiliotis, Claus, et al. - Streptococcus merionis sp. nov., isolated from Mongolian jirds (Meriones unguiculatus). - Int. J. Syst. Evol. Microbiol. 59(Pt 4): 766-70. doi:10.1099/ijs.0.65823-0

[29] Vancanneyt, Devriese, De Graef, Baele, Lefebvre, Snauwaert, et al. - Streptococcus minor sp. nov., from faecal samples and tonsils of domestic animals. - Int. J. Syst. Evol. Microbiol. 54(Pt 2): 449-52. doi:10.1099/ijs.0.02818-0

[30] Kadri, Amar, Ouadghiri, Cnockaert, Aerts, El Farricha, et al. - Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk. - Int. J. Syst. Evol. Microbiol. 64(Pt 7): 2480-5. doi:10.1099/ijs.0.062893-0

[31] Tong, Gao, Dong - Streptococcus oligofermentans sp. nov., a novel oral isolate from caries-free humans. - Int. J. Syst. Evol. Microbiol. 53(Pt 4): 1101-4. doi:10.1099/ijs.0.02493-0

[32] Shinozaki-Kuwahara, Saito, Hirasawa, Takada - Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants. - Int. J. Syst. Evol. Microbiol. 64(Pt 11): 3755-9. doi:10.1099/ijs.0.064048-0

[33] Nomoto, Maruyama, Ishida, Tohya, Sekizaki, Osawa, et al. - Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov. - Int. J. Syst. Evol. Microbiol. 65(Pt 2): 438-43. doi:10.1099/ijs.0.067116-0

[34] Vela, Perez, Zamora, Palacios, Domínguez, Fernández-Garayzábal, et al. - Streptococcus porci sp. nov., isolated from swine sources. - Int. J. Syst. Evol. Microbiol. 60(Pt 1): 104-8. doi:10.1099/ijs.0.011171-0

[35] Huch, De Bruyne, Cleenwerck, Bub, Cho, Watzl, et al. - Streptococcus rubneri sp. nov., isolated from the human throat. - Int. J. Syst. Evol. Microbiol. 63(Pt 11): 4026-32. doi:10.1099/ijs.0.048538-0

[36] Nielsen, Kragelund, Seviour, Nielsen - Identity and ecophysiology of filamentous bacteria in activated sludge. - FEMS Microbiol. Rev. 33(6): 969-98. doi:10.1111/j.1574-6976.2009.00186.x

[37] Willcox, Zhu, Knox - Streptococcus australis sp. nov., a novel oral streptococcus. - Int. J. Syst. Evol. Microbiol. 51(Pt 4): 1277-81. doi:10.1099/00207713-51-4-1277

[38] Daffonchio, Thaveesri, Verstraete - Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. - Appl. Environ. Microbiol. 61(10): 3676-80.

[39] Koga, Okahashi, Takahashi, Kanamoto, Asakawa, Iwaki, et al. - Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants of Streptococcus mutans serotype c. - Infect. Immun. 58(2): 289-96.

[40] Sussman, Saito, Shevach, Germain, Ashwell - Thy-1- and Ly-6-mediated lymphokine production and growth inhibition of a T cell hybridoma require co-expression of the T cell antigen receptor complex. - J. Immunol. 140(8): 2520-6.

[41] Westergren, Olsson - Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro. - Infect. Immun. 40(1): 432-5.

[42] van der Mei, de Vries, Busscher - Hydrophobic and electrostatic cell surface properties of thermophilic dairy streptococci. - Appl. Environ. Microbiol. 59(12): 4305-12.

[43] Miörner, Johansson, Kronvall - Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci. - Infect. Immun. 39(1): 336-43.

Hide details

comments powered by Disqus

The online MiDAS field guide is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


The MiDAS taxonomy is a manual curation of the Silva database and is redistributed for non-commercial use only.


Citing MiDAS: McIlroy S.J., Saunders A.M., Albertsen M., Nierychlo M., McIlroy B., Hansen A.A., Karst S.M., Nielsen J.L., Nielsen P.H. (2015) MiDAS: the field guide to the microbes of activated sludge. Database, Vol. 2015

Contact us at